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The stochastic-deterministic approach to modeling of the Saffman–Taylor hydrodynamic instability in filtration
of mixing fluids in a porous medium is considered. The numerical model is used to study the dynamics of de-
velopment of the instability in displacement of a more viscous fluid by a less viscous one in uniformly and
nonuniformly permeable media. Results of the modeling are compared to experimental data.

Introduction. Displacement of a more viscous fluid by a less viscous one from a porous medium or a Hele–
Shaw cell can be accompanied by the development of the Saffman–Taylor hydrodynamic instability [1, 2]. The latter
can occur in the case of both mixing [1, 3, 4] and immiscible fluids [2, 5]. The interest in this instability is associated
with the problems of improvement of the efficiency of oil beds, conservation of underground-water resources, optimi-
zation of chemical-technology processes connected with the filtration of fluids through porous media, etc.

The present work is devoted to modeling of the Saffman–Taylor instability which arises in the case of dis-
placement of mixing fluids in a porous medium. The experiments [3, 4, 6, 7] conducted with quasi-two-dimensional
media showed that the development of the instability leads to the formation of stochastically bending and branching
fingers of a displacing fluid in the region of a displaced fluid. The space-time characteristics of formation of the fin-
gers are determined by the ratio of viscosities of the fluids and the relationship between convective transfer and hy-
drodispersion. In theoretical investigation of the Saffman–Taylor instability, both analytical and numerical methods are
used. The former allow study of the conditions of occurrence of the instability [8, 9] and the asymptotic behavior of
the fingers of a displacing fluid [10, 11]. Use of the latter makes it possible to study the dynamics of development of
the instability in more detail. The growth of the fingers of a displacing fluid in the unstable mode of displacement was
modeled using deterministic models based on numerical solution of the equations of filtration and mass transfer [6, 7,
12, 13]. Nonuniformities of the permeability of a medium [6, 7] or the initial disturbances of a fluid flow [12, 13]
were used to initiate the instability. Spontaneous initiation of the instability due to the microinhomogeneity of the me-
dium or fluctuations of the flow can be described by stochastic methods. For stochastic modeling of the development
of the Saffman–Taylor instability use was made of randomly wandering particles [14, 15], random motion of the dis-
placement front with a probability proportional to the pressure gradient [16–18], and random movement of the lines of
equal concentration which is determined by the rate of change of the concentration [19]. However, the stochastic mod-
els [14–19] have limited possibilities for description of hydrodynamic instabilities which are caused by nonequilibrium
mass and heat transfer, e.g., instability arising in nonisothermal filtration due to the dependence of viscosity on tem-
perature, reaction-filtration instability associated with the dissolution of rock and increase in the permeability of the
medium, etc. Modeling of the development of such instabilities requires a more extended description of mass and heat
transfer compared to the stochastic models. In [20], a combined stochastic-deterministic method of modeling two-phase
filtration, which allows one to describe the development of instability connected with nonequilibrium mass and/or heat
transfer, was suggested. In the present work, the method proposed is developed and used to describe hydrodynamic in-
stability in filtration of mixing fluids. We present the results of modeling of the development of the instability in dis-
placement of a more viscous fluid by a less viscous one in uniformly and nonuniformly permeable media.
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Formulation of the Problem. We consider the planned displacement of a more viscous fluid by a less vis-
cous one from a horizontal bed. The fluids are assumed to be mixing and incompressible. Their viscosities are deter-
mined by the concentration of the dissolved component (thickener) which increases viscosity. The hydrodispersion
arising as a result of the inhomogeneity of the porous-medium structure is described by a double-porosity approxima-
tion [21]. According to this approach, the pore space is divided into flow-through and stagnant pores occupied by the
mobile and immobile parts of the fluid, respectively. Thus, the porosity of the medium m is the sum of the flow-
through porosity m1 and the stagnant porosity m2. The rate of filtration U of the mobile part of the fluid is determined
by the Darcy law [22]. The mobile and immobile parts of the fluid exchange dissolved substances. The density of the
mass-exchange flow is taken to be proportional to the difference of the concentrations of the components in the mobile
and immobile parts of the fluid. The system of equations which describes the dynamics of pressure P and the concen-
trations of the thickening component in the mobile C and immobile C∗  parts of the fluid can be written in the form

div U = 0 , (1)

U = − 
k

µ (C)
 grad P , (2)

m1 
∂C

∂t
 = − div (C⋅U) − α (C − C

∗ ) , (3)

m2 
∂C

∗

∂t
 = α (C − C

∗ ) . (4)

Fluid flow is considered in a rectangular region D = (0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly) with impermeable side boundaries
(∂P ⁄ ∂y = 0; y = 0, Ly; 0 ≤ x ≤ Lx). The flow Q of a fluid with a zero concentration of the thickener (C = 0) is set in the
charging loop (x = 0, 0 ≤ y ≤ Ly). Free sink (P = 0) occurs in the discharge loop (x = Lx, 0 ≤ y ≤ Ly). At the initial instant
of time (t = 0) the concentrations of the thickener in the flow-through and stagnant pores are equal (C = C∗  = C0).

Formulation of the Stochastic-Deterministic Numerical Model. The system of equations (1)–(4) is discret-
ized by uniform rectangular space and time grids with steps h and τ, respectively. Each node (i, j) of the space grid
corresponds to an element of the medium with permeability ki,j. The state of the node (i, j) at the time instant t =
nτ is determined by the pressure Pi,j

n  and the concentrations of the thickener in the mobile Ci,j
n  and immobile (C∗ )i,j

n

parts of the fluid. Successive calculations of the pressure and the concentrations are made by the method of splitting
by physical processes [23] at each time step n. First, we calculate the distribution of the pressure Pi,j

n  for concentra-
tions corresponding to the previous time step. Then, on the basis of the found pressure distribution, we calculate new
concentrations of the components in the flow-through pores C

~
i,j
n resulting from the convective motion of the fluid.

Then, we determine changes in the concentrations due to the mass exchange between the mobile and immobile parts
of the fluid and calculate the concentrations Ci,j

n  and (C∗ )i,j
n  at the nth time step.

The algorithm of calculation of the pressure distribution is based on the difference analog of Eqs. (1) and (2)
written conservatively by a five-point template [24]:

   ∑ 

i′,j′

 Ui,j,i′,j′
n

 = 0 , (5)

Ui,j,i′,j′
n

 = Gi,j,i′,j′
n−1

 (Pi,j
n

 − Pi′,j′
n ) , (6)

where Ui,j,i′,j′
n  is the flow of the fluid between the nodes (i, j) and (i′, j′) and Gi,j,i′,j′

n  is the hydraulic conductivity be-
tween the nodes (i, j) and (i′, j′); summation in expression (5) is made over all the nodes neighboring the node (i, j).
The hydraulic conductivity Gi,j,i′,j′

n  is calculated from the formula
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Gi,j,i′,j′
n

 = 2 (µ (Ci,j
n ) ⁄ ki,j + µ (Ci′,j′

n ) ⁄ ki′,j′)
−1

 .

In solving the system of equations (5), (6) relative to the pressure Pi,j
n  by the method of iterations [23], use is made

of the distributions of concentrations determined on the previous time layer.
The change in the concentration of the mobile part of the fluid due to convective mass transfer is calculated

using stochastically wandering streamlines [20]. The streamlines begin on the charging loop and terminate on the dis-
charge loop (Fig. 1). The probability Wi,j,i′,j′

n  of motion of the streamline from the node (i, j) to the node (i′, j′) of the
computational grid is taken to be proportional to the flow of the liquid phase Ui,j,i′,j′

n  between the nodes, if the fluid
flow is directed from the node (i, j) to the node (i′, j′), and is equal to zero in the case of return flow 

Wi,j,i′,j′
n

 = 










Ui,j,i′,j′
n  ⁄ Zi,j

n
 ,

0 ,
     

Ui,j,i′,j′
n

 > 0 ;

Ui,j,i′,j′
n

 ≤ 0 ,

where Zi,j
n  is the normalization factor (Zi,j

n  =  ∑ 

i′,j′

 Ui,j,i′,j′
n , summation is made over the nodes (i′,j′) neighboring (i, j) for

which the condition Ui,j,i′,j′
n  > 0 holds). The motion of the streamline is initiated at one node of the charging loop with

a probability proportional to the normal component of the flow. One streamline along which filtration of the fluid of

volume ∆V = Qτ occurs is constructed at each time step. In order to decrease numerical variance, the value of the time

step τ is determined from the condition of equality of the volume ∆V to the volume of the mobile part of the fluid
at one node of the grid:

τ = m1h
2 ⁄ Q .

The concentration of the thickener in the mobile part of the fluid due to convective motion along the streamline is de-
termined by the relation 

C
~

i,j
 n

 = Ci′,j′
n−1

 ,

where (i′, j′) is the node preceding the node (i, j) along the streamline. It is taken for all nodes not lying on the
streamline that C

~
i,j
n  = Ci,j

n−1.
The values of the concentration of the thickener Ci,j

n  and (C∗ )i,j
n  on the time layer n, which arise as a result

of mass exchange between the mobile and immobile parts of the fluid, are found from simultaneous solution of the
difference analogs of the equation of mass exchange and the law of mass conservation:

Fig. 1. Example of construction of a wandering streamline: 1) charging loop;
2) loop of discharge; 3) lines of equal concentration; 4) wandering streamline.
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m1 
Ci,j

n
 − C

~
i,j
 n

τ
 = α ((C∗ )i,j

n
 − C

~
i,j
 n) ,   m1 (Ci,j

n
 − C

~
i,j
 n) = − m2 ((C∗ )i,j

n
 − (C∗ )i,j

n−1) .

Thus, in the model suggested, the stochastic interpretation of the Darcy law is used to describe convective
mass transfer. The distribution of pressure and the mass exchange between the mobile and immobile parts of the fluid
are calculated on the basis of corresponding deterministic regularities. The randomly wandering streamline used in the
model greatly differs from the streamline used in the theory of filtration for fragmentation of a planned flow by
streamlines [22]. The geometry of a classical streamline is constant, whereas a wandering streamline changes its posi-
tion. The width of a classical streamline changes in movement along the axis of the line, while a wandering line has
a constant width. At the same time, a classical streamline and the wandering streamline used in the model have im-
portant features in common. Their direction is determined by a pressure gradient and the statistically averaged position
of the ensemble of wandering streamlines corresponds to the position of the classical streamline. Both lines begin on
the charging loop and terminate on the loop of discharge.

Results and Discussion. The model was used to study the development of the hydrodynamic instability of
displacement of mixing fluids in uniformly and nonuniformly permeable porous media. The conditions of modeling
were selected so as to directly compare the results of the calculation to the data of experimental study of instability
published in [6]. We considered the displacement of the aqueous solution of glycerol (µ = 64.32), used as a thickener,
by the aqueous solution of potassium citrate of equal density (µ = 2.1). Thus, the ratio M of the viscosity of the dis-
placed fluid to the viscosity of the displacing one was 30.6. The dependence of the solution viscosity on the relative
concentration of glycerol (µ(C) = 2.1 + 17.037C − 108.29C2 + 418.28C3 − 581.15C4 + 316.34C5) is presented in Fig. 2
[6]. The unit concentration of glycerol corresponds to the displaced solution (C0 = 1). The dimensions of the region
of modeling Lx = 0.8 m and Ly = 0.06 m, flow rate of the displacing fluid Q = 4.8⋅10−7 m2 ⁄ sec, porosity m = 0.38,

Fig. 2. Dependence of the viscosity µ (mPa⋅sec) on the concentration of glyc-
erol C (rel. units) in the solution [6].

Fig. 3. Results of modeling of displacement at different ratios of viscosities: a)
finger formation in displacement of the aqueous solution of glycerol (M =
30.6); b) displacement of the solution of a passive component (M = 1). The
lines indicate isobars. The dark color corresponds to a lower concentration of
the dissolved substance. The volume of the displaced fluid is 0.4 of the total
volume of the pore space.
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and permeability k = 6.5⋅10−12 m2 corresponded to the conditions of [6]. The coefficient of mass exchange
α = 0.02 sec−1, flow porosity m1 = 0.27, and stagnant porosity m2 = 0.11 were determined on the basis of comparison
of the results of modeling to the experimental data [6]. Calculations were made on a 240 × 18-node grid.

A typical result of modeling of the growth of a finger of a displacing fluid in the solution of glycerol as a
result of the development of hydrodynamic instability is presented in Fig. 3a. For comparison, the pattern of displace-
ment obtained for the same values of the viscosities of the displacing and displaced fluids (in the displaced fluid, glyc-
erol is replaced by a passive component not affecting viscosity) is shown in Fig. 3b. The observed nonuniformity of
the displacement front corresponds to hydraulic dispersion arising as a result of the inhomogeneity of the velocity field
of the fluid in the pore space. A similar pattern of the displacement front for the same viscosities of the fluids was
obtained in [25]. The profiles of the averaged concentration of glycerol and the passive component are presented in
Fig. 4. The result of the analytical solution of the one-dimensional equation of convection-dispersion transfer [22], ob-
tained for the same conditions of filtration and the coefficient of dispersion D = 1.5⋅10−9 m2 ⁄ sec, is shown for com-
parison. It is seen that in the stable mode of displacement the profile of the averaged concentration of the passive
component coincides with the analytical solution. The development of fingers in unstable displacement facilitates the
motion of the displacing fluid and results in the broadening of the displacement front. To make quantitative compari-
son of the results of the modeling and the experiment we studied the dependence of the volume fraction of the dis-
placed glycerol on the volume of the displacing fluid. In Fig. 5, the solid line corresponds to the result of averaging
over ten numerical experiments (the value of the standard deviation is shown in gray) and the points correspond to
experimental data [6]. The rather good agreement between the results of the modeling and the experimental data [6]
indicates the adequacy of the model suggested.

The dynamics of development of fingers and the effect of inhomogeneous permeability of the medium were
studied in a shorter and more extended region of modeling (Lx = 0.4 m, Ly = 0.12, 120 × 40-node computational
grid). A typical picture of the development of instability is presented in Fig. 6. Several thin fingers of the displacing
fluid are formed at the initial stage. During the growth, the fingers branch randomly and bend. The redistribution of
pressure leads to the origination of the effect of screening and suppression of the growth of retarding fingers. The de-
velopment of the dominant fingers is accompanied by their broadening. The picture of development of the instability
obtained in modeling is in agreement with the results of experimental study of the displacement of mixing fluids in a
porous medium [3, 4, 6, 7]. The inhomogeneities of the permeability change the distributions of the pressure and the
fluid flow in the medium. The results of the modeling show that in this case the position of the dominant fingers of
the displacing fluid corresponds to sites with the highest pressure gradient. Moreover, the presence of the inhomo-
geneity leads to the acceleration of the development of instability. Figure 7 shows examples of the development of in-

Fig. 4. Dependence of the averaged concentration C (rel. units) on the distance
r (m) to the charging loop: 1) passive component in the stable mode of dis-
placement; 2) glycerol in the unstable mode of displacement; 3) result of a
one-dimensional analytical calculation. The volume of the displaced fluid is 0.4
of the total volume of the pore space.

Fig. 5. Dependence of the fraction η of the displaced glycerol on the volume
V of the displacing solution (fraction of the total pore space).
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stability in the presence of rectangular inclusions with permeability kincl (decreased, kincl
 ⁄ k = 0.1, and increased,

kincl
 ⁄ k = 10, compared to the main medium) in the medium. Thus, the introduction of the inhomogeneity of the per-

meability of the porous medium makes it possible to affect the development of instability.
Conclusions. The suggested stochastic-deterministic model adequately describes the main laws governing the

development of hydrodynamic instability in the case of displacement of a fluid containing a substance with increased
viscosity by a less viscous fluid in a porous medium. The results of modeling the growth of fingers of the displacing
fluid due to the development of instability agree with the data of the laboratory experiments conducted with quasi-two-
dimensional media. In a nonuniformly permeable medium, the position of the fingers is determined by sites with the
highest gradient of pressure which allows control of the growth of the fingers of the displacing fluid by high- and
low-permeability inclusions. The results of the work can be used to predict the propagation of contamination in under-
ground water to regenerate porous catalysts in the processes of chemical technology, to develop chromatographic meth-
ods of analysis, etc.

This work was carried out with financial support from the Russian Foundation for Basic Research (grant No.
00–02–16664).

NOTATION

α, mass-transfer coefficient; C and C∗ , concentrations of the thickener in the mobile and immobile parts of
the fluid; G, hydraulic conductivity; h, period of the space grid; k, permeability of the medium; kincl, permeability of
the inclusion; Lx and Ly, size of the region of modeling along the coordinate axes X and Y; µ, viscosity; m, porosity

Fig. 6. Result of modeling of the development of hydrodynamic instability in
displacement of the aqueous solution of glycerol (M = 30.6). The volume of
the displaced fluid (fraction of the total volume of the pore space) is: 1) 0.1,
b) 0.2, c) 0.3, and d) 0.4.

Fig. 7. Result of modeling of the development of hydrodynamic instability in a
nonuniformly permeable medium: a) high-permeability inclusion (kincl

 ⁄ k = 10);
b) low-permeability inclusion (kincl

 ⁄ k = 0.1). The position of the inclusion is
shown dashed.
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of the medium; P, hydrostatic pressure; Q, fluid flow through the charging loop; t, time; τ, period of the time grid;
V, volume; x, y, Cartesian coordinates; W, probability.
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